LETTERS 2003 Vol. 5, No. 7 ¹¹¹¹-**¹¹¹⁴**

ORGANIC

Preparation, Structure, and Reaction of a Sterically Encumbered 1-Phosphaallene Containing a Cyclopropylidene Moiety

Shigekazu Ito, Shigeo Kimura, and Masaaki Yoshifuji*

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan

yoshifj@mail.cc.tohoku.ac.jp

Received January 31, 2003

ABSTRACT

Sterically protected (*Z***)-1-(2,4,6-tri-***tert***-butylphenyl)-2,5-dibromo-1-phosphapent-1-ene was allowed to react with potassium** *tert***-butoxide to afford a cyclopropylidenephosphaethene, which was characterized spectroscopically and by X-ray crystallography. Construction of the cycloalkyl groups and isomerization of 1-phosphapenta-1,2,4-trienes to cyclopropylidenephosphaethenes are also described.**

Kinetic stabilization with bulky substituents has been widely utilized for the preparation of various unstable chemical species such as the unsaturated bonds of heavier main-group elements and the chemistry of multiple-bonded phosphorus compounds.1 Since we reported the first example of a stable phosphorus-phosphorus double-bonded species (diphosphene), 2 we have now synthesized a number of lowcoordinated phosphorus compounds bearing the 2,4,6-tri-*tert*butylphenyl (abbreviated to Mes*) group.3 In the course of research on low-coordinated phosphorus compounds, several 1-phosphaallene derivatives⁴ have been prepared as "phosphacumulenes". Since allene derivatives have been widely used in organic synthesis due to their high reactivities,⁵ 1-phosphaallenes might be of interest as novel synthons for unusual organophosphorus compounds.1,3a However, studies on 1-phosphaallenes have not been performed so extensively and only a few 1-phosphaallenes have been prepared.¹ On the other hand, cyclopropane derivatives as a group are one of the most attractive organic counterparts due to their ring distortion and unique electronic properties.⁶ Additionally, cyclopropanes bearing unsaturated bonds as in methylenecyclopropane have shown extensive utility and versatility in reactions.6,7 We now report the preparation, structure, and a

^{(1) (}a) Regitz, M.; Scherer, O. J. *Multiple Bonds and Low Coordination in Phosphorus Chemistry*; Thieme: Stuttgart, Germany, 1990. (b) Dillon, K. B.; Mathey, F.; Nixon, J. F. *Phosphorus*: *The Carbon Copy*; Wiley: Chichester, UK, 1998.

⁽²⁾ Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. *J. Am. Chem. Soc.* **1981**, *103*, 4587. Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. *J. Am. Chem. Soc.* **1982**, *104*, 6167.

^{(3) (}a) Yoshifuji, M. *J. Chem. Soc.*, *Dalton Trans.* **1998**, 3343. (b) Yoshifuji, M. *J. Organomet. Chem.* **2000**, *611*, 210. (c) Tokitoh, N. *J. Organomet. Chem.* **2000**, *611*, 217.

^{(4) (}a) Kato, T.; Gornitzka, H.; Baceiredo, A.; Bertrand, G. *Angew. Chem.*, *Int. Ed.* **2000**, *39*, 3319. (b) Escudie´, J.; Ranaivonjatovo, H.; Rigon, L. *Chem. Re*V*.* **²⁰⁰⁰**, *¹⁰⁰*, 3639.

^{(5) (}a) Patai, S. *The Chemistry of Ketenes*, *Allenes and Related Compounds*; Wiley: New York, 1980. (b) Landor, S. R. *The Chemistry of the Allenes*; Academic Press: London, UK, 1982. (c) Schuster, H. F.; Coppola, G. M. *Allenes in Organic Synthesis*; Wiley: New York, 1984.

^{(6) (}a) de Meijere, A. *Methoden der Organischen Chemie* (*Houben-Weyl*) *Vol. E17: Carbocyclic Three- and Four-Membered Ring Compounds*; Thieme: Stuttgart, Germany, 1996. (b) de Meijere, A. *Angew. Chem.*, *Int. Ed. Engl.* **1979**, *18*, 809.

selection of reactions of a bulky cyclopropylidenephosphaethene stabilized by the Mes* group, as exemplified by the construction of the cyclopropyl moiety. Moreover, the preparation of a cyclobutylidenephosphaethene is also described.

The sterically encumbered 2,2-dibromo-1-phosphaethene (**1**)8 bearing the Mes* group was allowed to react with butyllithium3a,9 and then with 1,3-dibromopropane to afford (*Z*)-2,5-dibromo-1-phosphapent-1-ene *Z*-**2** in excellent yield $(>90\%)$.¹⁰ Phosphapentene Z-2 was treated with potassium *tert*-butoxide to afford a novel cyclopropylidenephosphaethene derivative **3**, which was first characterized by spectroscopic methods.¹¹ In the ³¹P NMR spectrum, the signal of **3** was observed at a lower field than that reported for 3-methyl-1-(2,4,6-tri-*tert*-butylphenyl)-1-phosphabuta-1,2 diene (Mes*P=C=CMe₂; δ_P 60), whereas in the ¹³C NMR spectrum the signals due to the two sp2 carbon atoms of **3** appeared at a higher field than those reported for $Mes*P=$ $C=CMe₂$ ($\delta_{P=C}$ 235.0; $\delta_{C=C}$ 117.0).¹² The UV spectrum of **3** displayed a bathochromic shift compared with that of 1-(2,4,6-tri-*tert-*butylphenyl)-1-phosphaallene [*λ*max 275 nm (sh, $\log \epsilon$ 3.18)],¹³ probably due to a hyperconjugation effect enhanced by the cyclopropyl group.6,14 On the other hand, the (*Z*)-5-bromo-1-phosphapent-1-ene *Z*-**5**, prepared from 2-bromo-1-phosphaethene **4**, 8a was allowed to react with potassium *tert*-butoxide to afford the (*Z*)-2-cyclopropyl-1 phosphaethene *Z*-**6**. ¹⁰ The formation of *Z*-**6** under these

(9) Yoshifuji, M.; Ito, S. *Top. Curr. Chem.* **2003**, *223*, 67. MHz, CDCl₃) δ 250; ¹H NMR (400 MHz, CDCl₃) δ 3.50 (t, 2H, ³*J*_{HH} = 7 MHz, CDCl₃) *δ* 250; ¹H NMR (400 MHz, CDCl₃) *δ* 3.50 (t, 2H, ³*J*_{HH} = 7
Hz, CH₂Br), 3.05 (dt, 2H, ³*J*_{PH} = 21 Hz, ³*J*_{HH} = 7 Hz, P=CCH₂), 2.24
(quin 2H ³*J*_{HH} = 7 Hz, CH₂), Z-5⁻³¹P¹¹H₃ (quin, 2H, ³*J*_{HH} = 7 Hz, CH₂). *Z*-**5**: ³¹P{¹H} NMR (162 MHz, CDCl₃) *δ*
250: ¹H NMR (400 MHz, CDCl₃) *δ* 7 12 (dd. 1H, ²*J*_{PH} = 39 Hz, ³*J*_{HH} = 250; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, 1H, ²*J*_{PH} = 39 Hz, ³*J*_{HH} = 8 Hz, P=CH), 3.21 (t, 2H, ${}^{3}J_{HH} = 7$ Hz, CH₂Br), 1.76 (m, 2H, CH₂), 1.66 $(m, 2H, P=CCH₂)$. *Z*-6: ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 232; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 6.57 \text{ (dd, 1H, }^2 J_{\text{PH}} = 38 \text{ Hz}, \frac{3J_{\text{HH}}}{11 \text{ Hz}}, P=\text{CH}),$ 0.85 (m, 1H, CH), 0.69 (m, 2H, CHH), 0.48 (m, 2H, CHH); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 177.7 (d, ¹J_{PC} = 43 Hz, P=C), 18.3 (d, ²J_{PC} = 21 (101 MHz, CDCl₃) *δ* 177.7 (d, ¹*J*_{PC} = 43 Hz, P=C), 18.3 (d, ²*J*_{PC} = 21 Hz, CH), 10.6 (d, ³*J*_{PC} = 7 Hz, CH₂), Z₋₁₀: ³¹P^{{1}H} NMR (162 MHz Hz, CH), 10.6 (d, ³J_{PC} = 7 Hz, CH₂). Z-**10**: ³¹P{¹H} NMR (162 MHz, CDCl₂) δ 247^{: 1}H NMR (400 MHz, CDCl₂) δ 3 48 (t, 2H, ³J_{PH} = 7 Hz CDCl₃) *δ* 247; ¹H NMR (400 MHz, CDCl₃) *δ* 3.48 (t, 2H, ³*J*_{HH} = 7 Hz, CH₂Br), 2.91 (dt, 2H, ³*J_{PH}* = 21 Hz, ³*J_{HH}* = 7 Hz, P=CCH₂), 1.99 (quin, 2H ³*J_{PH}* = 7 Hz, CH₂), 1.99 (quin, 2H ³*J_{P*} $2H$, ${}^{3}J_{HH} = 7$ Hz, CH₂), 1.85 (quin, 2H, ${}^{3}J_{HH} = 7$ Hz, CH₂). **11**: ${}^{31}P_1^{\{1}H}$ NMR (162 MHz, CDCl3) *δ* 76; 1H NMR (400 MHz, CDCl3) *δ* 3.03 (m, 2H, CH2), 2.96 (m, 2H, CH2), 1.92 (m, 2H, CH2); 13C{1H} NMR (101 MHz, CDCl₃) δ 229.4 (d, ¹J_{PC} = 24 Hz, P=C), 122.1 (d, ²J_{PC} = 14 Hz, P=C=C), 31.2 (d, ³J_{PC} = 15 Hz, CH₂), 17.4 (s, CH₂), 12^{, 31}P(¹H₂) NMR $P=C=C$), 31.2 (d, ³*J*_{PC} = 15 Hz, CH₂), 17.4 (s, CH₂). **12**: ³¹P{¹H} NMR
(162 MHz, CDCl₂) δ 66^{, 1}H NMR (400 MHz, CDCl₂) δ 5.68 (dt, 1H²*l*_{pu} (162 MHz, CDCl3) *δ* 66; 1H NMR (400 MHz, CDCl3) *δ* 5.68 (dt, 1H, ²*J*PH $=$ 27 Hz, ${}^{3}J_{\text{HH}} = 8$ Hz, $=$ CH), 3.35 (t, 2H, ${}^{3}J_{\text{HH}} = 7$ Hz, CH₂Br), 1.99 (m, 2H, P=CCH₂), 1.96 (quin, 2H, ³ $J_{HH} = 7$ Hz, CH₂); ¹³C{¹H} NMR (101)
MHz, CDCl₂) δ 239 3 (d⁻¹ $J_{DC} = 27$ Hz, P=C), 109 2 (d⁻² $J_{DC} = 13$ Hz MHz, CDCl₃) *δ* 239.3 (d, ¹J_{PC} = 27 Hz, P=C), 109.2 (d, ²J_{PC} = 13 Hz, P=C=C), 33 1 (s, CH₂R_F), 32 7 (d, ⁴J_{PC} = 2 Hz, CH₂), 27 8 (d, ³J_{PC} = 13 $P=C=C$), 33.1 (s, CH₂Br), 32.7 (d, ⁴J_{PC} = 2 Hz, CH₂), 27.8 (d, ³J_{PC} = 13 Hz, P=C*C*H₂).

(11) **3**: Colorless crystals, mp $85-86$ °C dec; ${}^{31}P{^1H}$ NMR (162 MHz, CDCl3) *δ* 70; 1H NMR (400 MHz, CDCl3) *δ* 1.74 (m, 2H, C*H*H), 1.69 (m, 2H, CH*H*); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 221.9 (d, ¹J_{PC} = 26 Hz, $P=C=C$), 94.5 (d, ²*J*_{PC} = 14 Hz, P=C=*C*), 11.0 (d, ³*J*_{PC} = 7 Hz, CH₂); UV (hexanes) $λ_{\text{max}}$ (log ϵ) 210 (4.71), 224 (4.63), 263 (3.95), 308 (sh, 3.34).

(12) Etemad-Moghadam, G.; Tachon, C.; Gougyou, M.; Koenig, M. *Tetrahedron Lett.* **1991**, *32*, 3687.

(13) Ma¨rkl, G.; Reitinger, S. *Tetrahedron Lett.* **1988**, *29*, 463.

(14) (a) de Meijere, A. *Chem. Ber.* **1974**, *107*, 1684. (b) de Meijere, A.; Jaekel, F.; Simon, A.; Borrmann, H.; Köhler, J.; Johnels, D.; Scott, L. T. J. *Am. Chem. Soc*. **1991**, *113*, 3935. (c) Bader, R. F.; Slee, T. S.; Cremer, D.; Kraka, E. *J. Am. Chem. Soc.* **1983**, *105*, 5061.

a Reagents and conditions: (a) (i) *n*-BuLi, THF, -78 °C; (ii) 1,3-dibromopropane, -⁷⁸ °C to room temperature. (b) *^t*-BuOK, THF, 0° C.

conditions indicated that, in the reaction of *Z*-**2** with potassium *tert*-butoxide, the cyclopropyl ring was first formed by *γ*-elimination before the 1-phosphaallene skeleton was constructed. No *â*-elimination took place to afford either 1-phosphapenta-1,2,4-triene or 1-phosphapenta-1,4-diene derivative from *Z*-**2** or *Z*-**5** with potassium *tert*-butoxide, probably indicating that the acidity of the protons at the 3-position is sufficiently high to generate the requisite anion.15

Next, the cyclopropylidenephosphaethene **3** was allowed to react with $W(CO)_{5}$ (thf) to afford the corresponding complex **7** in 70% yield (Scheme 2).16 The structure of **7**

 a Reagents and conditions: (a) $W(CO)_{5}$ (thf), rt. (b) LiAlH₄, THF, $0 °C$.

was confirmed by X-ray crystallographic analysis as shown in Figure $1¹⁷$ The C1-C2 distance is shorter whereas the ^P-C1 distance is slightly longer than the corresponding data for $[Mes*P=C=CPh_2][W(CO)_5]$ $[C=C 1.311(10), P=C 1.311(10), P=C$ 1.632(7) Å l^{18} On the other hand, the C2-C3 and C3-C4 distances in **7** are elongated compared to the proximal bonds

^{(7) (}a) Nakamura, I.; Yamamoto, Y. *Ad*V*. Synth. Catal.* **²⁰⁰²**, *³⁴⁴*, 111. (b) Nakamura, E.; Yamago, S. *Acc. Chem. Res.* **2002**, *35*, 867.

^{(8) (}a) Appel, R.; Casser, C.; Immenkeppel, M. *Tetrahedron Lett.* **1985**, *26*, 3551. (b) Goede, S. J.; Bickelhaupt, F. *Chem. Ber.* **1991**, *124*, 2677. (c) Goede, S. J.; Dam, M. A.; Bickelhaupt, F. *Recl. Tra*V*. Chim. Pays-Bas* **1994**, *113*, 278.

^{(15) (}a) Ito, S.; Kimura, S.; Yoshifuji, M. *Chem. Lett.* **2002**, 708. (b) Ito, S.; Kimura, S.; Yoshifuji, M. *Bull. Chem. Soc. Jpn.* **2003**, *76*, 405.

⁽¹⁶⁾ **7**: Orange crystals, mp 122–124 °C.; ³¹P{¹H} NMR (162 MHz, CCla) δ 40 (¹*J*_{pw} = 265 Hz): ¹H NMR (400 MHz, CDCla) δ 1.96 (m CDCl₃) *δ* 40 (¹*J*_{PW} = 265 Hz); ¹H NMR (400 MHz, CDCl₃) *δ* 1.96 (m, 2H, C*H*H), 1.85 (m, 2H, CH*H*); ¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 223.2 $(d, {}^{1}J_{PC} = 94 \text{ Hz}, P=C=C)$, 200.5 $(d, {}^{2}J_{PC} = 34 \text{ Hz}, \text{CO}_{ax})$, 197.5 $(d, {}^{2}J_{PC}$ = 10 Hz, CO_{eq}), 95.2 (d, ²J_{PC} = 11 Hz, P=C=C), 12.0 (d, ³J_{PC} = 15 Hz, CH₂); IR (KBr) *ν* 2071, 1955, 1930 cm⁻¹. Anal. Calcd for C₂₇H₃₃O₅PW: C, 49.71; H, 5.10. Found: C, 49.73; H, 5.04.

Figure 1. An ORTEP drawing of the molecular structure for **7** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths (A) and angles (deg): P-W 2.5311(8), P-C1 1.637(4), P1- C_{Mes} 1.847(4), C1-C2 1.269(5), C2-C3 1.481(6), C2-C4 1.480(7), C3-C4 1.53(1), W-P-C1 115.4(1), W-P- C_{Mes} 141.8(1), C1-P1- $C_{\text{ Mes}}$ 102.6(2), P1-C1-C2 171.7(3), C1-C2-C3 148.8(6), C1-C2-C4 149.0(5), C3- $C2-C4$ 62.2(5), $C2-C3-C4$ 58.9(4), $C2-C4-C3$ 58.9(4).

in methylenecyclopropane $[1.457(14)$ Å and the C3-C4 distance is close to the distal bond $[1.5415(3)$ \AA ¹⁹ It is suggested that the high-energy HOMO of the cyclopropyl group can interact with the $P=C=C$ skeleton, especially, to raise the bond order of the C=C part. $6,14$

Taking into account the existence of the phosphaallene group and the cyclopropyl ring in the same molecule, the reactivity of **3**, especially the transformation of the cyclopropylidenephosphaethene skeleton, is of great interest and the reaction of **3** with a hydride reagent was carried out. Compound **3** was thus reacted with lithium aluminum hydride to mainly afford a geometric mixture of phosphaethenes $E/Z - 6$ ($E/Z = 4:1$) together with the phosphinomethylenecyclopropane **8**. 20,21 Interestingly **8** isomerized to $E/Z - 6$ ($E/Z = 5:1$) upon heating in the presence of a base such as triethylamine.²² Although it is not obvious whether the P=C or C=C moiety displays higher reactivity,²³ it should be noted that the cyclopropyl ring remained unchanged under similar reaction conditions that were employed for vinylidenecyclopropane (Scheme 2).²⁴ Neither thermolysis (80 °C in toluene) nor photolysis (λ >300 nm in benzene- d_6) of **3** afforded any skeletal isomerization product probably due to the bulky Mes^{$*$} group,²⁵ even though

(19) Laurie, V. W.; Stigliani, W. M. *J. Am. Chem. Soc.* **1970**, *92*, 1485.

several isomerizations of ethenylidenephosphiranes giving the corresponding phospha[3]radialenes have been reported.²⁶

Since the *γ*-elimination by potassium *tert*-butoxide was established, we then examined the reaction of *Z*-**2** with another base and an alkoxide was selected. Compound *Z*-**2** was thus allowed to react with sodium ethoxide to afford 1-phosphapenta-1,2,4-triene **9** in 11% isolated yield together with 3 (Scheme 3).²⁷ It is suggested that the weaker basicity

^a Reagents and conditions: (a) NaOEt, THF, reflux. (b) *t*-BuOK, THF, rt.

of the ethoxide might facilitate the formation of the 1-phosphaallene skeleton rather than the formation of the cyclopropylidene group. Interestingly, compound **9** isomerized to

(22) (a) Mercier, F.; Hugel-Le Goff, C.; Mathey, F. *Tetrahedron Lett.* **1989**, *30*, 2397. (b) Nguyen, M. T.; Landuyt, L.; Vanquickenborne, L. G. *Chem. Phys. Lett.* **1993**, *212*, 543.

(23) A theoretical study concluded that the HOMO and the LUMO of $HP=C=CH_2$ are dominated by the P=C moiety. Nguyen, M. T.; Hegarty, A. F. *J. Chem. Soc.*, *Perkin Trans. 2* **1985**, 1999.

(24) Maercker, A.; Tatai, A.; Grebe, B.; Girreser, U. *J. Organomet. Chem.* **2002**, *642*, 1.

(25) No isomerization of an ethenylidenephosphirane bearing the Mes* group has been reported. Breen, T. L.; Stephan, D. W. *J. Am. Chem. Soc.* **1995**, *117*, 11914.

⁽¹⁷⁾ Crystal data for $7: C_{27}H_{33}O_5PW$: *M* 652.38, red prisms crystallized from dichloromethane at 0 °C, crystal dimensions $0.30 \times 0.30 \times 0.25$ mm³, monoclinic, space group $P2_1/c$ (no. 14), $a = 13.2761(4)$ Å, $b = 10.1614(3)$
Å, $c = 20.8686(8)$ Å, $\beta = 101.7659(9)$ °, $V = 2756.1(2)$ Å³, $Z = 4$, ρ_{cal} Å, *c* = 20.8686(8) Å, $\hat{\beta}$ = 101.7659(9)°, *V* = 2756.1(2) Å³, *Z* = 4, ρ_{calod}
= 1.572 σ cm⁻³, $F(000)$ = 1.296.00 μ = 4.287 mm⁻¹, *T* = 1.50 K, 21.968 $= 1.572$ g cm⁻³, $F(000) = 1296.00$, $\mu = 4.287$ mm⁻¹, $T = 150$ K, 21968
reflections measured $(2\theta_{\text{max}} = 55.0^{\circ})$ 6225 were observed $(R_{\text{int}} = 0.044)$ reflections measured ($2\theta_{\text{max}} = 55.0^{\circ}$), 6225 were observed ($R_{\text{int}} = 0.044$), $R1 = 0.031$ [$I > 2.0\sigma(I)$], $R_w = 0.042$ (all data), $S = 1.23$ (439 parameters). CCDC-200284.

⁽¹⁸⁾ Yoshifuji, M.; Toyota, K.; Sato, T.; Inamoto, N.; Hirotsu, K. *Heteroat. Chem.* **1990**, *1*, 339.

⁽²⁰⁾ To a solution of **3** (123 mg, 0.38 mmol) in THF was added a THF solution of LiAlH₄ (0.75 mmol) at 0 °C. The reaction mixture was warmed to room temperature and then refluxed for 1 h. After cooling to room temperature, the mixture was treated with ethyl acetate at 0 °C. The solvent was removed in vacuo and the residue was extracted with hexane. In the ³¹P NMR spectrum E/Z -6 (E/Z 4:1) and **8** were observed in a 2:1 ratio together with trace amounts of unidentified products. E -6: ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 234; ¹H NMR (400 MHz, CDCl₃) δ 7.00 (dd, 1H, (162 MHz, CDCl₃) *δ* 234; ¹H NMR (400 MHz, CDCl₃) *δ* 7.00 (dd, 1H, ²*J*_{PH} = 25 Hz, ³*J*_{HH} = 11 Hz, P=CH), 2.10 (m, 1H, CH), 0.96 (m, 2H, CHH), 0.57 (m, 2H, CHH), 8: ³¹P NMR (162 MHz, CDCl₃) *δ* −70 (dd CHH), 0.57 (m, 2H, CHH). 8: ³¹P NMR (162 MHz, CDCl₃) δ -70 (dd, $^{1}J_{\text{PH}} = 230$ Hz, $^{2}J_{\text{PH}} = 22$ Hz); ¹H NMR (400 MHz, CDCl₃) δ 5.72 (d, 1H, $^{1}J_{\text{PH}} = 230$ Hz, $^{2}H_{\text{PH}} = 22$ Hz); ¹H NMR (400 MH obtained in a similar manner for *Z*-**6**.

⁽²¹⁾ The reaction of 1-(2,4,6-tri-*tert-*butylphenyl)-1-phosphaallene (Mes*Pd C=CH₂)¹³ with lithium aluminum hydride gave Mes*P(H)CH=CH₂ (δ_P -66) and (*E*)-Mes*P=CHCH₃ (δ _P 250) in a 1:4 ratio. As for the preparation of (*E*)-Mes*P=CHCH₃: (a) Märkl, G.; Bauer, W. *Angew. Chem., Int. Ed. Engl.* **1989**, *28*, 1695. (b) Ito, S.; Toyota, K.; Yoshifuji, M. *Chem. Commun.* **1997**, 1637.

^{(26) (}a) Miyahara, I.; Hayashi, A.; Hirotsu, K.; Yoshifuji, M.; Yoshimura, H.; Toyota, K. *Polyhedron* **1992**, *11*, 385. (b) Toyota, K.; Yoshimura, H.; Uesugi, T.; Yoshifuji, M. *Tetrahedron Lett.* **1991**, *32*, 6879. (c) Maercker, A.; Brieden, W. *Chem. Ber.* **1991**, *124*, 933. (d) Komen, C. M. D.; Horan, C. J.; Krill, S.; Gray, G. M.; Lutz, M.; Spek, A. L.; Ehlers, A. W.; Lammertsma, K. *J. Am. Chem. Soc.* **2000**, *122*, 12507. (e) Bloch, R.; Le Perchec, P.; Conia, J.-M. *Angew. Chem.*, *Int. Ed. Engl.* **1970**, *9*, 798.

⁽²⁷⁾ **9**: Colorless crystals, mp $82-84$ °C dec; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 68; ¹H NMR (400 MHz, CDCl₃) δ 6.42 (m, 1H, =CH), 6.37, $(m, 1H, =CH)$, 5.25 $(m, 1H, =CH)$, 5.06 $(m, 1H, =CH)$; ¹³C{¹H} NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta$ 242.5 (d, ¹*J*_{PC} = 25 Hz, P=C=C), 131.7 (d, ²*J*_{PC} = 13 Hz, P=C=C), 118.1 (d, $5J_{PC} = 3$ Hz, CH₂), 112.9 (d, $3J_{PC} = 11$ Hz, CH).

3 in the presence of potassium *tert-*butoxide probably through cyclization involving the [1,2]-migration of the allenic proton.28

Second, we applied the above procedure to a cyclobutylidene derivative. The 6-bromo-1-phosphahex-1-ene *Z*-**10,** prepared by a similar method for *Z*-**2** with 1,4-dibromobutane, was allowed to react with potassium *tert*-butoxide to afford the cyclobutylidenephosphaethene **11** in only 15% isolated yield.10,29 On the other hand, the reaction of *Z*-**10** with sodium ethoxide afforded 6-bromo-1-phosphahexa-1,2 diene **12**, ¹⁰ which was converted to **11** in the presence of potassium *tert*-butoxide (Scheme 3).

In conclusion, we have demonstrated that it is possible to prepare a novel 1-phosphaallene derivative **3** containing the cyclopropylidene moiety and the carbonyltungsten(0) complex **7**. Reaction of **3** with a hydride reagent afforded **6** and **8** without cleavage of the cyclopropyl rings. The cyclopropylidenephosphaethene skeleton remained unchanged by heat and by light. Potassium *tert*-butoxide promoted not only *γ*-elimination but also isomerization of **9** to **3**. The phosphaethenes carrying the cycloalkyl group are expected to be utilized as a synthon for a variety of organophosphorus compounds to reveal several unique properties that are enhanced by the electronic effects of the cyclopropane ring.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research (No. 90011676) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Full spectroscopic data for *Z*-**2**, **3**, *Z*-**5**, *Z*/*E*-**6**, **7**, **9**, *Z*-**10**, **11**, and **12**, experimental details for the preparation of **3**, **7**, and **9**, and X-ray crystallographic data (CIF) for **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0341750

^{(28) (}a) Griffin, G. W.; Covell, J.; Petterson, R. C.; Dodson, R. M.; Klose, G. *J. Am. Chem. Soc.* **1965**, *87*, 1410. (b) Griffin, G. W.; Marcantonio, A. F.; Kristinsson, H.; Petterson, R. C.; Irving, C. S. *Tetrahedron Lett.* **1965**, 2951.

⁽²⁹⁾ We obtained 1,7-bis(2,4,6-tri-*tert*-butylphenyl)-1,7-diphosphacyclododeca-2,8-diyne $[\delta_P = -50; \nu_{C=C} \quad 2189 \text{ cm}^{-1}; \quad m/z \quad 684 \quad (\text{M}^+)]$ as a byproduct in the reaction of *Z*-**10** under condition b in Scheme 3.